Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
DNA Repair (Amst) ; 134: 103616, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159447

ABSTRACT

For over a decade, it has been known that yeast Sld2, Dpb11, GINS and Polε form the pre-loading complex (pre-LC), which is recruited to a CDC45-bound MCM2-7 complex by the Sld3/Sld7 heterodimer in a phospho-dependent manner. Whilst functional orthologs of Dbp11 (TOPBP1), Sld3 (TICRR) and Sld7 (MTBP) have been identified in metazoans, controversy has surrounded the identity of the Sld2 ortholog. It was originally proposed that the RECQ helicase, RECQL4, which is mutated in Rothmund-Thomson syndrome, represented the closest vertebrate ortholog of Sld2 due to a small region of sequence homology at its N-Terminus. However, there is no clear evidence that RECQL4 is required for CMG loading. Recently, new findings suggest that the functional ortholog of Sld2 is actually DONSON, a replication fork stability factor mutated in a range of neurodevelopmental disorders characterised by microcephaly, short stature and limb abnormalities. These studies show that DONSON forms a complex with TOPBP1, GINS and Polε analogous to the pre-LC in yeast, which is required to position the GINS complex on the MCM complex and initiate DNA replication. Taken together with previously published functions for DONSON, these observations indicate that DONSON plays two roles in regulating DNA replication, one in promoting replication initiation and one in stabilising the fork during elongation. Combined, these findings may help to uncover why DONSON mutations are associated with such a wide range of clinical deficits.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication
2.
Viruses ; 15(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38140597

ABSTRACT

The adenovirus C5 E1B-55K protein is crucial for viral replication and is expressed early during infection. It can interact with E4orf6 to form a complex that functions as a ubiquitin E3 ligase. This complex targets specific cellular proteins and marks them for ubiquitination and, predominantly, subsequent proteasomal degradation. E1B-55K interacts with various proteins, with p53 being the most extensively studied, although identifying binding sites has been challenging. To explain the diverse range of proteins associated with E1B-55K, we hypothesized that other binding partners might recognize the simple p53 binding motif (xWxxxPx). In silico analyses showed that many known E1B-55K binding proteins possess this amino acid sequence; therefore, we investigated whether other xWxxxPx-containing proteins also bind to E1B-55K. Our findings revealed that many cellular proteins, including ATR, CHK1, USP9, and USP34, co-immunoprecipitate with E1B-55K. During adenovirus infection, several well-characterized E1B-55K binding proteins and newly identified interactors, including CSB, CHK1, and USP9, are degraded in a cullin-dependent manner. Notably, certain binding proteins, such as ATR and USP34, remain undegraded during infection. Structural predictions indicate no conservation of structure around the proposed binding motif, suggesting that the interaction relies on the correct arrangement of tryptophan and proline residues.


Subject(s)
Adenoviridae Infections , Adenovirus E4 Proteins , Adenoviruses, Human , Humans , Adenoviridae/metabolism , Adenovirus E1B Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Adenoviridae Infections/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Adenovirus E4 Proteins/genetics , Adenovirus E4 Proteins/metabolism , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism
3.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37820732

ABSTRACT

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Subject(s)
Cell Cycle Proteins , DNA Helicases , Nuclear Proteins , Animals , Humans , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , DNA Helicases/metabolism , DNA Replication , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Enzyme Activation
4.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37697435

ABSTRACT

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Animals , Female , Humans , Mice , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA Damage , DNA-Binding Proteins/metabolism , Exoribonucleases/metabolism , Genomic Instability , Neoplasm Recurrence, Local , R-Loop Structures , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Cells ; 12(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37508532

ABSTRACT

The mammalian Ccr4-Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. It is involved in the control of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, and nuclear RNA surveillance; the Ccr4-Not complex also plays a central role in the regulation of mRNA decay. Growing evidence suggests that gene transcription has a vital role in shaping the landscape of genome replication and is also a potent source of replication stress and genome instability. Here, we have examined the effects of the inactivation of the Ccr4-Not complex, via the depletion of the scaffold subunit CNOT1, on DNA replication and genome integrity in mammalian cells. In CNOT1-depleted cells, the elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which, together with R-loop accumulation, results in replication fork slowing, DNA damage, and senescence. Furthermore, we have shown that the stability of TBP mRNA increases in the absence of CNOT1, which may explain its elevated protein expression in CNOT1-depleted cells. Finally, we have shown the activation of mitogen-activated protein kinase signalling as evidenced by ERK1/2 phosphorylation in the absence of CNOT1, which may be responsible for the observed cell cycle arrest at the border of G1/S.


Subject(s)
Catabolite Repression , Transcription Factors , Animals , Transcription Factors/metabolism , RNA/metabolism , RNA, Messenger/genetics , Genomic Instability , Mammals/metabolism
6.
Nucleic Acids Res ; 51(12): 6337-6354, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37224534

ABSTRACT

Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here, we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e. Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that ß-actin interacts with RPA directly in vitro, and in vivo a hyper-depolymerizing ß-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing ß-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.


Subject(s)
Actins , DNA Replication , Actins/genetics , Replication Protein A/genetics , Replication Protein A/metabolism , DNA, Single-Stranded/genetics , Molecular Chaperones/genetics
7.
Nucleic Acids Res ; 51(9): 4341-4362, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36928661

ABSTRACT

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.


Subject(s)
BRCA1 Protein , DNA Replication , Hereditary Breast and Ovarian Cancer Syndrome , Mutation , Transcription, Genetic , Humans , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , DNA Replication/genetics , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/pathology , Hereditary Breast and Ovarian Cancer Syndrome/physiopathology , RNA Polymerase II/metabolism , Transcription, Genetic/genetics , Promoter Regions, Genetic , Methyltransferases/deficiency , Methyltransferases/genetics , R-Loop Structures , Cell Death
8.
J Clin Invest ; 133(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-36795492

ABSTRACT

Although protein hydroxylation is a relatively poorly characterized posttranslational modification, it has received significant recent attention following seminal work uncovering its role in oxygen sensing and hypoxia biology. Although the fundamental importance of protein hydroxylases in biology is becoming clear, the biochemical targets and cellular functions often remain enigmatic. JMJD5 is a "JmjC-only" protein hydroxylase that is essential for murine embryonic development and viability. However, no germline variants in JmjC-only hydroxylases, including JMJD5, have yet been described that are associated with any human pathology. Here we demonstrate that biallelic germline JMJD5 pathogenic variants are deleterious to JMJD5 mRNA splicing, protein stability, and hydroxylase activity, resulting in a human developmental disorder characterized by severe failure to thrive, intellectual disability, and facial dysmorphism. We show that the underlying cellular phenotype is associated with increased DNA replication stress and that this is critically dependent on the protein hydroxylase activity of JMJD5. This work contributes to our growing understanding of the role and importance of protein hydroxylases in human development and disease.


Subject(s)
Histone Demethylases , Mixed Function Oxygenases , Humans , Animals , Mice , Histone Demethylases/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Protein Processing, Post-Translational
9.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36724785

ABSTRACT

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Subject(s)
Microcephaly , Movement Disorders , Neurodevelopmental Disorders , Humans , Intracellular Signaling Peptides and Proteins , HEK293 Cells , TOR Serine-Threonine Kinases
10.
Ageing Res Rev ; 86: 101887, 2023 04.
Article in English | MEDLINE | ID: mdl-36805074

ABSTRACT

Characterizing the molecular deficiencies underlying human aging has been a formidable challenge as it is clear that a complex myriad of factors including genetic mutations, environmental influences, and lifestyle choices influence the deterioration responsible for human pathologies. In addition, the common denominators of human aging, exemplified by the newly updated hallmarks of aging (López-Otín et al., 2023), suggest multiple avenues and layers of crosstalk between pathways important for genome and cellular homeostasis, both of which are major determinants of both good health and lifespan. In this regard, we postulate that hereditary disorders characterized by chromosomal instability offer a unique window of insight into aging and age-related disease processes. Recently, we discovered a new RECQ helicase disorder, designated RECON syndrome attributed to bi-allelic mutations in the RECQL1 gene (Abu-Libdeh et al., 2022). Cells deficient in RECQL1 exhibit genomic instability and a compromised response to replication stress, providing further evidence for the significance of genome homeostasis to suppress disease phenotypes. Here we provide a perspective on the pathology of RECON syndrome to inform the reader as to how molecular defects in the RECQL1 gene contribute to underlying deficiencies in nucleic acid metabolism often seen in certain aging or age-related diseases.


Subject(s)
Aging , RecQ Helicases , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , Syndrome , Aging/genetics , Mutation , Homeostasis/genetics
11.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36711944

ABSTRACT

Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e., Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that ß-actin interacts with RPA directly in vitro , and in vivo a hyper-depolymerizing ß-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing ß-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.

12.
Nat Commun ; 13(1): 6664, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333305

ABSTRACT

Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.


Subject(s)
Cell Cycle Proteins , Microcephaly , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Microcephaly/genetics , DNA Repair/genetics , Chromosomes/metabolism , Genomic Instability , DNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Chromosomal Proteins, Non-Histone/metabolism
13.
Mol Cell ; 82(10): 1924-1939.e10, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35439434

ABSTRACT

The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.


Subject(s)
DNA Breaks, Double-Stranded , Telomere-Binding Proteins , BRCA1 Protein/genetics , DNA/metabolism , DNA End-Joining Repair , DNA Repair , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Methylation , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
14.
Cancer Res ; 82(5): 819-830, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35027467

ABSTRACT

Mutations in SF3B1 have been identified across several cancer types. This key spliceosome component promotes the efficient mRNA splicing of thousands of genes including those with crucial roles in the cellular response to DNA damage. Here, we demonstrate that depletion of SF3B1 specifically compromises homologous recombination (HR) and is epistatic with loss of BRCA1. More importantly, the most prevalent cancer-associated mutation in SF3B1, K700E, also affects HR efficiency and as a consequence, increases the cellular sensitivity to ionizing radiation and a variety of chemotherapeutic agents, including PARP inhibitors. In addition, the SF3B1 K700E mutation induced unscheduled R-loop formation, replication fork stalling, increased fork degradation, and defective replication fork restart. Taken together, these data suggest that tumor-associated mutations in SF3B1 induce a BRCA-like cellular phenotype that confers synthetic lethality to DNA-damaging agents and PARP inhibitors, which can be exploited therapeutically. SIGNIFICANCE: The cancer-associated SF3B1K700E mutation induces DNA damage via generation of genotoxic R-loops and stalled replication forks, defective homologous recombination, and increased replication fork degradation, which can be targeted with PARP inhibitors.


Subject(s)
Neoplasms , Phosphoproteins , Poly(ADP-ribose) Polymerase Inhibitors , RNA Splicing Factors , DNA Replication , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Phenotype , Phosphoproteins/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , RNA Splicing Factors/genetics , Synthetic Lethal Mutations
15.
J Clin Invest ; 132(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35025765

ABSTRACT

Despite being the first homolog of the bacterial RecQ helicase to be identified in humans, the function of RECQL1 remains poorly characterized. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here, we identify 2 families with a genome instability disorder that we have named RECON (RECql ONe) syndrome, caused by biallelic mutations in the RECQL gene. The affected individuals had short stature, progeroid facial features, a hypoplastic nose, xeroderma, and skin photosensitivity and were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser), located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase, and fork restoration activity, while its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.


Subject(s)
Breast Neoplasms , DNA Replication , Female , Genetic Predisposition to Disease , Genomic Instability , Humans , Mutation , RecQ Helicases/genetics , RecQ Helicases/metabolism
16.
Viruses ; 13(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34960712

ABSTRACT

The adenovirus 12 early region 1B55K (Ad12E1B55K) protein has long been known to cause non-random damage to chromosomes 1 and 17 in human cells. These sites, referred to as Ad12 modification sites, have marked similarities to classic fragile sites. In the present report we have investigated the effects of Ad12E1B55K on the cellular DNA damage response and on DNA replication, considering our increased understanding of the pathways involved. We have compared human skin fibroblasts expressing Ad12E1B55K (55K+HSF), but no other viral proteins, with the parental cells. Appreciable chromosomal damage was observed in 55K+HSFs compared to parental cells. Similarly, an increased number of micronuclei was observed in 55K+HSFs, both in cycling cells and after DNA damage. We compared DNA replication in the two cell populations; 55K+HSFs showed increased fork stalling and a decrease in fork speed. When replication stress was introduced with hydroxyurea the percentage of stalled forks and replication speeds were broadly similar, but efficiency of fork restart was significantly reduced in 55K+HSFs. After DNA damage, appreciably more foci were formed in 55K+HSFs up to 48 h post treatment. In addition, phosphorylation of ATM substrates was greater in Ad12E1B55K-expressing cells following DNA damage. Following DNA damage, 55K+HSFs showed an inability to arrest in cell cycle, probably due to the association of Ad12E1B55K with p53. To confirm that Ad12E1B55K was targeting components of the double-strand break repair pathways, co-immunoprecipitation experiments were performed which showed an association of the viral protein with ATM, MRE11, NBS1, DNA-PK, BLM, TOPBP1 and p53, as well as with components of the replisome, MCM3, MCM7, ORC1, DNA polymerase δ, TICRR and cdc45, which may account for some of the observed effects on DNA replication. We conclude that Ad12E1B55K impacts the cellular DNA damage response pathways and the replisome at multiple points through protein-protein interactions, causing genomic instability.


Subject(s)
Adenovirus E1B Proteins/metabolism , Adenoviruses, Human/metabolism , DNA Damage , Genomic Instability , Cells, Cultured , DNA/chemistry , DNA Repair , DNA Replication , Fibroblasts , Humans , Nucleic Acid Conformation
17.
PLoS Genet ; 17(11): e1009909, 2021 11.
Article in English | MEDLINE | ID: mdl-34780483

ABSTRACT

The ATRX ATP-dependent chromatin remodelling/helicase protein associates with the DAXX histone chaperone to deposit histone H3.3 over repetitive DNA regions. Because ATRX-protein interactions impart functions, such as histone deposition, we used proximity-dependent biotinylation (BioID) to identify proximal associations for ATRX. The proteomic screen captured known interactors, such as DAXX, NBS1, and PML, but also identified a range of new associating proteins. To gauge the scope of their roles, we examined three novel ATRX-associating proteins that likely differed in function, and for which little data were available. We found CCDC71 to associate with ATRX, but also HP1 and NAP1, suggesting a role in chromatin maintenance. Contrastingly, FAM207A associated with proteins involved in ribosome biosynthesis and localized to the nucleolus. ATRX proximal associations with the SLF2 DNA damage response factor help inhibit telomere exchanges. We further screened for the proteomic changes at telomeres when ATRX, SLF2, or both proteins were deleted. The loss caused important changes in the abundance of chromatin remodelling, DNA replication, and DNA repair factors at telomeres. Interestingly, several of these have previously been implicated in alternative lengthening of telomeres. Altogether, this study expands the repertoire of ATRX-associating proteins and functions.


Subject(s)
Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , X-linked Nuclear Protein/genetics , Biotinylation/genetics , Cell Cycle Proteins/genetics , Cell Line , Chromatin/genetics , Chromobox Protein Homolog 5/genetics , DNA Damage/genetics , DNA Repair/genetics , Histone Chaperones/genetics , Histones/genetics , Humans , Molecular Chaperones/genetics , Promyelocytic Leukemia Protein/genetics , Telomere/genetics , tRNA Methyltransferases
18.
Nat Commun ; 12(1): 6313, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728620

ABSTRACT

Cross-talk between distinct protein post-translational modifications is critical for an effective DNA damage response. Arginine methylation plays an important role in maintaining genome stability, but how this modification integrates with other enzymatic activities is largely unknown. Here, we identify the deubiquitylating enzyme USP11 as a previously uncharacterised PRMT1 substrate, and demonstrate that the methylation of USP11 promotes DNA end-resection and the repair of DNA double strand breaks (DSB) by homologous recombination (HR), an event that is independent from another USP11-HR activity, the deubiquitylation of PALB2. We also show that PRMT1 is a ubiquitylated protein that it is targeted for deubiquitylation by USP11, which regulates the ability of PRMT1 to bind to and methylate MRE11. Taken together, our findings reveal a specific role for USP11 during the early stages of DSB repair, which is mediated through its ability to regulate the activity of the PRMT1-MRE11 pathway.


Subject(s)
Arginine/metabolism , MRE11 Homologue Protein/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Repressor Proteins/metabolism , Thiolester Hydrolases/metabolism , Ubiquitination , Arginine/chemistry , Cell Line , DNA Damage , Genomic Instability , Humans , Methylation
19.
EMBO Rep ; 22(5): e51120, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33779025

ABSTRACT

Replication stress, a major cause of genome instability in cycling cells, is mainly prevented by the ATR-dependent replication stress response pathway in somatic cells. However, the replication stress response pathway in embryonic stem cells (ESCs) may be different due to alterations in cell cycle phase length. The transcription factor MYBL2, which is implicated in cell cycle regulation, is expressed a hundred to a thousand-fold more in ESCs compared with somatic cells. Here we show that MYBL2 activates ATM and suppresses replication stress in ESCs. Consequently, loss of MYBL2 or inhibition of ATM or Mre11 in ESCs results in replication fork slowing, increased fork stalling and elevated origin firing. Additionally, we demonstrate that inhibition of CDC7 activity rescues replication stress induced by MYBL2 loss and ATM inhibition, suggesting that uncontrolled new origin firing may underlie the replication stress phenotype resulting from loss/inhibition of MYBL2 and ATM. Overall, our study proposes that in addition to ATR, a MYBL2-MRN-ATM replication stress response pathway functions in ESCs to control DNA replication initiation and prevent genome instability.


Subject(s)
Cell Cycle Proteins , Pluripotent Stem Cells , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Damage , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Pluripotent Stem Cells/metabolism
20.
Nat Commun ; 12(1): 1626, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712616

ABSTRACT

Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.


Subject(s)
Alleles , Cardiomyopathies/genetics , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/immunology , Telomere Shortening , Cell Cycle Proteins/metabolism , Cell Line , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Humans , Killer Cells, Natural
SELECTION OF CITATIONS
SEARCH DETAIL
...